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We investigate the characteristics of temporal phase locking states observed in the route to phase synchro-
nization. It is found that before phase synchronization there is a periodic phase synchronization state charac-
terized by periodic appearance of temporal phase-locking state and that the state leads to local negativeness in
one of the vanishing Lyapunov exponents. By taking a statistical measure, we present the evidences of the
phenomenon in unidirectionally and mutually coupled chaotic oscillators, respectively. And it is qualitatively
discussed that the phenomenon is described by a nonuniform oscillator model in the presence of noise.
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Over the past decade, synchronization in chaotic oscillathe vanishing Lyapunov exponents, taking the measure by
tors[1,2] has received much attention because of its fundawhich we can identify the maximal periodicity in a TPL
mental importance in nonlinear dynamics and potential apstate. We present a qualitative explanation of the phenom-
plications to laser dynamic$§3], electronic circuits[4], enon with a nonuniform oscillator model in the presence of
chemical and biological systerfis], and secure communica- NOise.
tions [6]. Synchronization in chaotic oscillators is character- We consider here the unidirectionally coupled nonidenti-
ized by the loss of exponential instability in the transversecal Rosler oscillators for a first example:
direction through interaction. In coupled chaotic oscillators,
it is known that various types of synchronization are possible X1=—wiy1— 21,
to observe, among which are complete synchronizatitfs)

[1,2], phase synchronizatiofiPS [7,8], lag synchronization

(LS) [9], and generalized synchronizati¢8S) [10]. y1= 1% +0.19,
One of the noteworthy synchronization phenomena in this
regard is PS which is defined by the phase locking between '2120.24_ z,(x;—10.0),

nonidentical chaotic oscillators whose amplitudes remain
chaotic and uncorrelated with each othg#; — 6,/ <const.
Since the first observation of PS in mutually coupled chaotic
oscillatorg[ 7], there have been extensive studies in th¢Bty
and experiment$3]. The most interesting recent develop- Yo=wyX,+0.165/,,
ment in this regard is the report that the interdependence
between physiological systems is represented by PS and tem- )
porary phase-lockingTPL) states, e.g(a) human heart beat 2;=0.2+25(x,—10.0, @)
and respiratior11], (b) a certain brain area and the tremor
activity [12], etc.[13,14]. Application of the concept of PS in where the subscripts imply the oscillators 1 and 2, respec-
these areas sheds light on the analysis of nonstationary Wively, w;, (=1.0=0.015) is the overall frequency of each
variate data coming from the biological systems, which wascillator, ande is the coupling strength. It is known that PS
thought to be impossible in the conventional statistical apappears in the regime= ¢, and that 2r phase jumps arise
proach. And this calls new attention to the PS phenomenomwhen e<e.. Lyapunov exponents play an essential role in

Accordingly, it is quite important to elucidate a detailed the investigation of the transition phenomenon with coupled
transition route to PS in consideration of the recent observashaotic oscillators, and as generally understood that PS tran-
tion of a TPL state in the biological systems. What is knownsition is closely related to the transition to the negative value
at present is that TP[8] transits to PS and then transits to in one of the vanishing Lyapunov exponef#s.
LS as the coupling strength increases. On the other hand, itis Figure 1 shows two largest conditional Lyapunov expo-
noticeable that the phenomenon from nonsynchronization taents from Eq(1) according to the coupling strengéh One
PS has hardly been studied, in contrast to the wide observaan see the dip characterized by the local negativeness in the
tions of the TPL states in the biological systems. vanishing Lyapunov exponent. The reference pofendC

The main goal of this Rapid Communication is to studyindicate the borders of the dip allits center. PS transition
the characteristics of TPL states observed in the regime fromccurs in the right ofC (e=0.085), where the phase differ-
nonsynchronization to PS in coupled chaotic oscillators. Weence of coupled chaotic oscillators is bounded within a con-
report that there exists a special locking regime in which astant. The temporal behaviors at the three reference points
TPL state shows maximal periodicity, we would call this are presented in Fig. 2. The phase jumpsSBabok quite
phenomenon ageriodic phase synchronizatiofPPS. We  regular, compared to thogeandC. Though this observation
show that this PPS state leads to local negativeness in one wfay seem rather intuitive, we shall see that it is a valid one

Xo= —waY2— Zp+ (X1~ Xp),
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FIG. 1. Two largest conditional Lyapunov exponents and the dip  FIG. 3. Measuré® as a function of. Big dots are the reference
in coupled Ressler oscillators whemy=1.0: A (e=0.058),B (e points of Fig. 1, and each point is the average value of 2500 TPL
=0.072), andC (e=0.083) are the reference points to explain states.
different characteristics of phase dynamics.

or wavelet transformatiofl4]. Among these we take the
and that all the phenomenon is deeply related to the dip, thmethod of phase space projection onto xjey; andx,-y,
local negativeness in the vanishing Lyapunov exponent ofplanes with the geometrical relatiofy ,= arctany; ,/x; -,
Fig. 1. and obtain phase differencg= 6, — 0.

A vanishing Lyapunov exponent corresponds to a phase The system of coupled oscillators is said to be in a TPL
variable of an oscillator and it exhibits the neutrality of an state(or laminar statkwhen<¢><AC, where(- - ) is the
oscillator in the phase direction. Accordingly, the local Neganning average over appropriate short time scale pis
tiveness of an exponent indicates that this neutrality is 10ihe cutoff value to define a TPL state. The locking length of
cally broken[7]. It is important to define an appropriate yhe Tp| statey, is defined by a time interval between two
phase variable in order to study the TPL state more thor- . - .

jacent peaks of¢) (see Fig. 2 In order to study the

oughly. In this regard, several methods have been propos teristi f the locking length introd
such as methods of using linear interpolation at a Poincar&naracterstics ot the locking lengin we introduce a mea-

section[7], phase space projectid®,8], tracing of the center
of rotation in phase spa¢é5], Hilbert transformatiof7,14],

yvar(7)
P(e)=—5 @

oof @ A B -

which is the ratio between the average value of time lengths

¢ - 1 of TPL states and their standard deviation. In terminology of

stochastic resonance, it can be interpreted as noise-to-signal

50 T C ratio [17,18. The measure would be minimized where the
— periodicity is maximized in the TPL states.

- 1 MeasureP as a function ofe is presented in Fig. 3. The
big dots indicate the reference points of Fig. 1. We see that

of . T - T . T - 1 the value ofP begins to drop rapidly from reference po#at
1510 (b)l l—_ which corresponds to the left border of the dip in Fig. 1. And
1.0-10* | ' ‘ l A the value ofP is minimized in a broad region arourig) the
50-10° center of the dip. The value rapidly increases after passing

<q§> 00 reference poinC, the right border of the dip. What is inter-

5.0-10° esting here is that in the region froes 0.062 to 0.078, the

0 2000 4000 __ 6000 8000 periodicity is maximized and corresponds to the central part

Time (sec.) of the dip. Eventually, the coupled chaotic oscillators de-

velop to PS neae=0.085. The result presented in Fig. 3
FIG. 2. Temporal behaviors of the phase differen@.¢ at  leads us to argue that the dip in a vanishing Lyapunov expo-
each reference point. is the locking length of a TPL staté) (¢) nent shows the maximal periodicity of the TPL states around
at reference poin€ (running averaged over 10 s to remove irrel- the minimum ofP. We call the TPL state inside the dip a PPS
evant fast fluctuations The cutoff value for a TPL state id,  State in the sense that the TPL state appears rather periodi-
=1.0x10"4. cally than outside the dip.
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To validate the argument, we explain the phenomenon in 0.1

1—

simplified dynamics. From Ed1), we obtain the equation of & 0.08 [ ]
motion in terms of phase difference: § i § J
e 0.06
de . & i
_:Aw+A(01,62,6)S|n¢+§(01,02,6), (3) [nd] 0.04_
dt = i
S 0.021 —
where a 0 [ 1
g i "V"\y‘r" \
(R 2-0.02} (a) h
A(91,92,6):(€+0-1300391+92)_E R,/ L D _
2
T I T | T I T I T I T

€R z z o
( 01,02,e)=§(R—z Sin( 6y + 6) + R—llsin( 61)— R—Zzsin( 6,) 0.8 .

+(e+0.015C0g 6,)Sin( 6,). p 06 |

HereAw=w;— w, andRy ,= \/x21,2+ yzllz. And from Eq.(3) 0.4+ b
we obtain the simplified equation to describe the phase dy- - ( )
namics:d¢/dt=Aw+(A)sin(¢p)+£ where(A) is the time opLb—1 . 1 . 1 . 1 . 1 .
average ofA(6,,6,,€). This is a nonuniform oscillator in 0 0.005 001 0015 0.02 0.025 0.03
the presence of noise whegeplays a role of effective noise €

[16] and the value ofA) controls the width of the bottleneck

(i.e., nonuniformity of the flow If the bottleneck is wide FIG. 4. Lyapunov exponents and the measBrén mutually
enough (i.e., far away from the saddle-node bifurcation coupled Rssler oscillator: X3 ;= — wy 21 — 23 2+ €(Xp.1— X1.9),
point: Aw>—(A)), the effective noise hardly contributes t0 y, ,= w, x; ,+0.15/; 5, Z; 5= 0.24+2; AX; ,— 10.0), where w; »

the phase dynamics of the system. So the passage time 4s1.0+0.015. (8) One can see the dip in one of the vanishing
wholly governed by the width of the bottleneck as follows: Lyapunov exponents and the reference pdirindicates the center
(1)~ 1A w?—(A)Y?>~ 1A w?— €?/4, which is a slowly in-  of it. (b) The big dot shows the minimum point and it coincides
creasing function ofe. In this region, while the standard with the point at the center of the dip. Each point is the average
deviation of the TPL states is nearly constéipécause the Vvalue of 12000 TPL states.

\évrlr?:llly Stgigz(rjdbodtg\?igigﬁstﬁ s ngs;zggasgﬁaer z?dlcl)ii?néo gystems. Thus it is reasonably summed up that a PPS state

length of TPL states is relatively short and the ratio betweer?)(is'[S djubst geforebtlhe ;tralnsiti?r? to PS ar_l(;j that t?e dg?:gb-
them is still large. Accordingly, the value d?(e) slowly served by Rosenbiurst al. IS the very evidence of a

decreases in the regime before reference pidimt Fig. 3. StaéeomrrTour;[uaalIyrgr?gr?ﬁgncirs]atﬁg? r?jglr"tarfgrg(.)rder of synchro-
On the contrary, as the bottleneck becomes narrginey nization, the I[r)fz:lse difference in coupled regular oscillzltors is
near the saddle-node bifurcation poidtw=—(A)) the ef- ’ P P 9

fective noise begins to perturb the process of bottleneck pag-er'Od'Cm’ whereas in coupled chaotic oscnlators_n IS 1r-
sage and the regular TPL states develop into the intermitterf?gmar.[S]' On f[h_e_ contrary, we report that_the fspeual lock-
ones[seeC in Fig. 2(a)] [8,19]. It makes the standard devia- Ing regime ?Xh'b't'ng the maximal perlod_|C|tyq a TPL state
tion increase very rapidly and this trend overpowers that ofalso exists in the case of coupled chaotic osc_|llator§. In gen-
the average value of locking lengths of the TPL states. Fo?ral’ Fhe phase dlfferenc'e of c'oupled ChaOt_'C OSC'""’F[.NS IS
that reason, the value &¥(e) rapidly increases passing the described by the one-dimensional Langevin equatign:
PPS regime in Fig. 3. Thus we understand that the competi= F(¢) + &, where{ is the effective noise with finite ampli-
tion between width of bottleneck and amplitude of effectivetude. The investigation with regard to PS transition is the
noise produces the crossover at the minimum poirR @), stu_dy of scaling of the laminar length around the_ \_/|rtu_al fixed
which shows the maximal periodicity of TPL states. point ¢*, whereF (¢*) =0 [19,20 and PS transition is es-
Rosenblumet al. first observed the dip in mutually tablished Whenlfﬁ F(¢)d¢|ymaxé. Consequently, the
coupled chaotic oscillatorls’]. However, the origin and the crossover region, from which the value Bfgrows exponen-
dynamical characteristics of the dip have been left unclaritially (as shown in Figs. 3 and 4exists because intermittent
fied. We argue that the dip observed in mutually coupledseries of TPL states with longer locking lengtrappears as
chaotic oscillators has the same origin as observed above S transition is nearer. Eventually it leads to an exponential
unidirectionally coupled systems. Figure 4 shows the fourgrowth of the standard deviation of the locking length. Thus
largest Lyapunov exponents and the valué€’aiccording to  we argue that PPS is the generic phenomenon mostly ob-
the coupling strengtle. We can see that the minimum region served in coupled chaotic oscillators prior to PS transition.
of P from €=0.022 to 0.027 coincides with the central part In conclusion, analyzing the dynamic behaviors in
of the dip @ in the figure even though the valley in Fig. coupled chaotic oscillators with slight parameter mismatch,
4(b) is not deeper than that of the unidirectionally coupledwe have completed the whole transition route to PS. We find
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that there exists a special locking regime called PPS in whiciMoreover, PPS could be a possible mechanism of the chaos
a TPL state shows maximal periodicity and that the periodregularization phenomenof21,22 observed in neurobio-
icity leads to local negativeness in one of the vanishindogical experiments.

Lyapunov exponents. We have also made a qualitative de- Note addedRecently, we were informed by S. Boccaletti
scription of this phenomenon with the nonuniform oscillatorthat the phenomenon observed by us was confirmed in CO
model in the presence of noise. Investigating the charactefzser systems, experimentallg3].

istics of TPL states between nonsynchronization and PS, we

have clarified the transition route before PS. Since PPS ap- The authors acknowledge the correspondence with S.
pears in the intermediate regime between nonsynchronizd3occaletti, E. Allaria, R. Meucci, and F.T. Arecchi about ex-
tion and PS, we expect that the concept of PPS can be us@eérimental confirmation of PPS and thank A. Pikovsky,
as a tool for analyzing weak interdependences, i.e., those ndt -C. Lai, K. Josi¢ and M. Choi for helpful comments. This
strong enough to develop to PS, between nonstationary biwork was supported by Creative Research Initiatives of the
variate data coming from biological systems, for instanceKorean Ministry of Science and Technology.
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