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Periodic phase synchronization in coupled chaotic oscillators
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We investigate the characteristics of temporal phase locking states observed in the route to phase synchro-
nization. It is found that before phase synchronization there is a periodic phase synchronization state charac-
terized by periodic appearance of temporal phase-locking state and that the state leads to local negativeness in
one of the vanishing Lyapunov exponents. By taking a statistical measure, we present the evidences of the
phenomenon in unidirectionally and mutually coupled chaotic oscillators, respectively. And it is qualitatively
discussed that the phenomenon is described by a nonuniform oscillator model in the presence of noise.
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Over the past decade, synchronization in chaotic osc
tors @1,2# has received much attention because of its fun
mental importance in nonlinear dynamics and potential
plications to laser dynamics@3#, electronic circuits @4#,
chemical and biological systems@5#, and secure communica
tions @6#. Synchronization in chaotic oscillators is charact
ized by the loss of exponential instability in the transve
direction through interaction. In coupled chaotic oscillato
it is known that various types of synchronization are poss
to observe, among which are complete synchronization~CS!
@1,2#, phase synchronization~PS! @7,8#, lag synchronization
~LS! @9#, and generalized synchronization~GS! @10#.

One of the noteworthy synchronization phenomena in
regard is PS which is defined by the phase locking betw
nonidentical chaotic oscillators whose amplitudes rem
chaotic and uncorrelated with each other:uu12u2u<const.
Since the first observation of PS in mutually coupled chao
oscillators@7#, there have been extensive studies in theory@8#
and experiments@3#. The most interesting recent develo
ment in this regard is the report that the interdepende
between physiological systems is represented by PS and
porary phase-locking~TPL! states, e.g.,~a! human heart bea
and respiration@11#, ~b! a certain brain area and the trem
activity @12#, etc.@13,14#. Application of the concept of PS in
these areas sheds light on the analysis of nonstationar
variate data coming from the biological systems, which w
thought to be impossible in the conventional statistical
proach. And this calls new attention to the PS phenomen

Accordingly, it is quite important to elucidate a detaile
transition route to PS in consideration of the recent obse
tion of a TPL state in the biological systems. What is kno
at present is that TPL@8# transits to PS and then transits
LS as the coupling strength increases. On the other hand
noticeable that the phenomenon from nonsynchronizatio
PS has hardly been studied, in contrast to the wide obse
tions of the TPL states in the biological systems.

The main goal of this Rapid Communication is to stu
the characteristics of TPL states observed in the regime f
nonsynchronization to PS in coupled chaotic oscillators.
report that there exists a special locking regime in whic
TPL state shows maximal periodicity, we would call th
phenomenon asperiodic phase synchronization~PPS!. We
show that this PPS state leads to local negativeness in on
1063-651X/2003/68~2!/025201~4!/$20.00 68 0252
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the vanishing Lyapunov exponents, taking the measure
which we can identify the maximal periodicity in a TP
state. We present a qualitative explanation of the phen
enon with a nonuniform oscillator model in the presence
noise.

We consider here the unidirectionally coupled noniden
cal Ros̈sler oscillators for a first example:

ẋ152v1y12z1 ,

ẏ15v1x110.15y1 ,

ż150.21z1~x1210.0!,

ẋ252v2y22z21e~x12x2!,

ẏ25v2x210.165y2 ,

ż250.21z2~x2210.0!, ~1!

where the subscripts imply the oscillators 1 and 2, resp
tively, v1,2 (51.060.015) is the overall frequency of eac
oscillator, ande is the coupling strength. It is known that P
appears in the regimee>ec and that 2p phase jumps arise
when e,ec . Lyapunov exponents play an essential role
the investigation of the transition phenomenon with coup
chaotic oscillators, and as generally understood that PS t
sition is closely related to the transition to the negative va
in one of the vanishing Lyapunov exponents@2#.

Figure 1 shows two largest conditional Lyapunov exp
nents from Eq.~1! according to the coupling strengthe. One
can see the dip characterized by the local negativeness in
vanishing Lyapunov exponent. The reference pointsA andC
indicate the borders of the dip andB its center. PS transition
occurs in the right ofC (e50.085), where the phase differ
ence of coupled chaotic oscillators is bounded within a c
stant. The temporal behaviors at the three reference po
are presented in Fig. 2. The phase jumps atB look quite
regular, compared to thoseA andC. Though this observation
may seem rather intuitive, we shall see that it is a valid o
©2003 The American Physical Society01-1
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and that all the phenomenon is deeply related to the dip,
local negativeness in the vanishing Lyapunov exponen
Fig. 1.

A vanishing Lyapunov exponent corresponds to a ph
variable of an oscillator and it exhibits the neutrality of
oscillator in the phase direction. Accordingly, the local neg
tiveness of an exponent indicates that this neutrality is
cally broken @7#. It is important to define an appropriat
phase variable in order to study the TPL state more th
oughly. In this regard, several methods have been propo
such as methods of using linear interpolation at a Poinc´
section@7#, phase space projection@7,8#, tracing of the center
of rotation in phase space@15#, Hilbert transformation@7,14#,

FIG. 1. Two largest conditional Lyapunov exponents and the
in coupled Ro¨ssler oscillators whenv051.0: A (e50.058), B (e
50.072), andC (e50.083) are the reference points to expla
different characteristics of phase dynamics.

FIG. 2. Temporal behaviors of the phase difference.~a! f at

each reference point.t is the locking length of a TPL state.~b! ^ḟ&
at reference pointC ~running averaged over 10 s to remove irre
evant fast fluctuations!. The cutoff value for a TPL state isLc

51.031024.
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or wavelet transformation@14#. Among these we take the
method of phase space projection onto thex1-y1 and x2-y2
planes with the geometrical relationu1,25arctan(y1,2/x1,2),
and obtain phase differencef5u12u2.

The system of coupled oscillators is said to be in a T
state~or laminar state! when ^ḟ&,Lc , where^•••& is the
running average over appropriate short time scale andLc is
the cutoff value to define a TPL state. The locking length
the TPL state,t, is defined by a time interval between tw
adjacent peaks of̂ḟ& ~see Fig. 2!. In order to study the
characteristics of the locking lengtht, we introduce a mea-
sure

P~e!5
Avar~t!

^t&
, ~2!

which is the ratio between the average value of time leng
of TPL states and their standard deviation. In terminology
stochastic resonance, it can be interpreted as noise-to-s
ratio @17,18#. The measure would be minimized where t
periodicity is maximized in the TPL states.

MeasureP as a function ofe is presented in Fig. 3. The
big dots indicate the reference points of Fig. 1. We see
the value ofP begins to drop rapidly from reference pointA,
which corresponds to the left border of the dip in Fig. 1. A
the value ofP is minimized in a broad region aroundB, the
center of the dip. The value rapidly increases after pass
reference pointC, the right border of the dip. What is inter
esting here is that in the region frome50.062 to 0.078, the
periodicity is maximized and corresponds to the central p
of the dip. Eventually, the coupled chaotic oscillators d
velop to PS neare50.085. The result presented in Fig.
leads us to argue that the dip in a vanishing Lyapunov ex
nent shows the maximal periodicity of the TPL states arou
the minimum ofP. We call the TPL state inside the dip a PP
state in the sense that the TPL state appears rather per
cally than outside the dip.

p FIG. 3. MeasureP as a function ofe. Big dots are the reference
points of Fig. 1, and each point is the average value of 2500 T
states.
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To validate the argument, we explain the phenomenon
simplified dynamics. From Eq.~1!, we obtain the equation o
motion in terms of phase difference:

df

dt
5Dv1A~u1 ,u2 ,e!sinf1j~u1 ,u2 ,e!, ~3!

where

A~u1 ,u2 ,e!5~e10.15!cos~u11u2!2
e

2 S R1

R2
D ,

j~u1 ,u2 ,e!5
e

2 S R1

R2
D sin~u11u2!1

z1

R1
sin~u1!2

z2

R2
sin~u2!

1~e10.015!cos~u2!sin~u2!.

HereDv5v12v2 andR1,25Ax1,2
2 1y1,2

2 . And from Eq.~3!
we obtain the simplified equation to describe the phase
namics:df/dt5Dv1^A&sin(f)1j, where^A& is the time
average ofA(u1 ,u2 ,e). This is a nonuniform oscillator in
the presence of noise wherej plays a role of effective noise
@16# and the value of̂A& controls the width of the bottlenec
~i.e., nonuniformity of the flow!. If the bottleneck is wide
enough ~i.e., far away from the saddle-node bifurcatio
point: Dv@2^A&), the effective noise hardly contributes
the phase dynamics of the system. So the passage tim
wholly governed by the width of the bottleneck as follow
^t&;1/ADv22^A&2;1/ADv22e2/4, which is a slowly in-
creasing function ofe. In this region, while the standar
deviation of the TPL states is nearly constant~because the
widely opened bottlenecks periodically appear and lead
small standard deviation!, the average value of locking
length of TPL states is relatively short and the ratio betwe
them is still large. Accordingly, the value ofP(e) slowly
decreases in the regime before reference pointB in Fig. 3.

On the contrary, as the bottleneck becomes narrower~i.e.,
near the saddle-node bifurcation point:Dv>2^A&) the ef-
fective noise begins to perturb the process of bottleneck
sage and the regular TPL states develop into the intermit
ones@seeC in Fig. 2~a!# @8,19#. It makes the standard devia
tion increase very rapidly and this trend overpowers tha
the average value of locking lengths of the TPL states.
that reason, the value ofP(e) rapidly increases passing th
PPS regime in Fig. 3. Thus we understand that the comp
tion between width of bottleneck and amplitude of effecti
noise produces the crossover at the minimum point ofP(e),
which shows the maximal periodicity of TPL states.

Rosenblum et al. first observed the dip in mutually
coupled chaotic oscillators@7#. However, the origin and the
dynamical characteristics of the dip have been left uncl
fied. We argue that the dip observed in mutually coup
chaotic oscillators has the same origin as observed abov
unidirectionally coupled systems. Figure 4 shows the f
largest Lyapunov exponents and the value ofP according to
the coupling strengthe. We can see that the minimum regio
of P from e50.022 to 0.027 coincides with the central pa
of the dip (D in the figure! even though the valley in Fig
4~b! is not deeper than that of the unidirectionally coupl
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systems. Thus it is reasonably summed up that a PPS
exists just before the transition to PS and that the dip
served by Rosenblumet al. is the very evidence of a PP
state in mutually coupled chaotic oscillators.

Common apprehension is that near the border of sync
nization, the phase difference in coupled regular oscillator
periodic @7#, whereas in coupled chaotic oscillators it is
regular@8#. On the contrary, we report that the special loc
ing regime exhibiting the maximal periodicity of a TPL sta
also exists in the case of coupled chaotic oscillators. In g
eral, the phase difference of coupled chaotic oscillators
described by the one-dimensional Langevin equation:ḟ
5F(f)1j, wherej is the effective noise with finite ampli
tude. The investigation with regard to PS transition is t
study of scaling of the laminar length around the virtual fix
point f* , whereF(f* )50 @19,20# and PS transition is es

tablished when u*f
f* F(f)dfu&maxuju. Consequently, the

crossover region, from which the value ofP grows exponen-
tially ~as shown in Figs. 3 and 4!, exists because intermitten
series of TPL states with longer locking lengtht appears as
PS transition is nearer. Eventually it leads to an exponen
growth of the standard deviation of the locking length. Th
we argue that PPS is the generic phenomenon mostly
served in coupled chaotic oscillators prior to PS transitio

In conclusion, analyzing the dynamic behaviors
coupled chaotic oscillators with slight parameter mismat
we have completed the whole transition route to PS. We fi

FIG. 4. Lyapunov exponents and the measureP in mutually

coupled Ro¨ssler oscillator: ẋ1,252v1,2y1,22z1,21e(x2,12x1,2),

ẏ1,25v1,2x1,210.15y1,2, ż1,250.21z1,2(x1,2210.0), where v1,2

51.060.015. ~a! One can see the dip in one of the vanishi
Lyapunov exponents and the reference pointD indicates the center
of it. ~b! The big dot shows the minimum point and it coincid
with the point at the center of the dip. Each point is the avera
value of 12 000 TPL states.
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that there exists a special locking regime called PPS in wh
a TPL state shows maximal periodicity and that the peri
icity leads to local negativeness in one of the vanish
Lyapunov exponents. We have also made a qualitative
scription of this phenomenon with the nonuniform oscilla
model in the presence of noise. Investigating the charac
istics of TPL states between nonsynchronization and PS
have clarified the transition route before PS. Since PPS
pears in the intermediate regime between nonsynchron
tion and PS, we expect that the concept of PPS can be
as a tool for analyzing weak interdependences, i.e., those
strong enough to develop to PS, between nonstationary
variate data coming from biological systems, for instan
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Moreover, PPS could be a possible mechanism of the ch
regularization phenomenon@21,22# observed in neurobio-
logical experiments.

Note added.Recently, we were informed by S. Boccale
that the phenomenon observed by us was confirmed in C2

laser systems, experimentally@23#.

The authors acknowledge the correspondence with
Boccaletti, E. Allaria, R. Meucci, and F.T. Arecchi about e
perimental confirmation of PPS and thank A. Pikovsk
Y. -C. Lai, K. Josić, and M. Choi for helpful comments. Thi
work was supported by Creative Research Initiatives of
Korean Ministry of Science and Technology.
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